0
2013
Impact Factor

Yury Karavaev

Yury Karavaev
Studencheskaya st. 7, Izhevsk, 426069, Russia
M.T. Kalashnikov Izhevsk State Technical University

Publications:

Ardentov A. A., Karavaev Y. L., Yefremov K. S.
Euler Elasticas for Optimal Control of the Motion of Mobile Wheeled Robots: the Problem of Experimental Realization
2019, vol. 24, no. 3, pp.  312-328
Abstract
This paper is concerned with the problem of optimal path planning for a mobile wheeled robot. Euler elasticas, which ensure minimization of control actions, are considered as optimal trajectories. An algorithm for constructing controls that realizes the motion along the trajectory in the form of an Euler elastica is presented. Problems and special features of the application of this algorithm in practice are discussed. In particular, analysis is made of speedup and deceleration along the elastica, and of the influence of the errors made in manufacturing the mobile robot on the precision with which the prescribed trajectory is followed. Special attention is also given to the problem of forming optimal trajectories of motion along Euler elasticas to a preset point at different angles of orientation. Results of experimental investigations are presented.
Keywords: mobile wheeled robot, Euler’s elastica, optimal control, experimental investigations
Citation: Ardentov A. A., Karavaev Y. L., Yefremov K. S.,  Euler Elasticas for Optimal Control of the Motion of Mobile Wheeled Robots: the Problem of Experimental Realization, Regular and Chaotic Dynamics, 2019, vol. 24, no. 3, pp. 312-328
DOI:10.1134/S1560354719030055
Karavaev Y. L., Kilin A. A., Klekovkin A. V.
Experimental Investigations of the Controlled Motion of a Screwless Underwater Robot
2016, vol. 21, no. 7-8, pp.  918-926
Abstract
In this paper we describe the results of experimental investigations of the motion of a screwless underwater robot controlled by rotating internal rotors. We present the results of comparison of the trajectories obtained with the results of numerical simulation using the model of an ideal fluid.
Keywords: screwless underwater robot, experimental investigations, helical body
Citation: Karavaev Y. L., Kilin A. A., Klekovkin A. V.,  Experimental Investigations of the Controlled Motion of a Screwless Underwater Robot, Regular and Chaotic Dynamics, 2016, vol. 21, no. 7-8, pp. 918-926
DOI:10.1134/S1560354716070133
Borisov A. V., Karavaev Y. L., Mamaev I. S., Erdakova N. N., Ivanova T. B., Tarasov V. V.
Experimental Investigation of the Motion of a Body with an Axisymmetric Base Sliding on a Rough Plane
2015, vol. 20, no. 5, pp.  518-541
Abstract
In this paper we investigate the dynamics of a body with a flat base (cylinder) sliding on a horizontal rough plane. For analysis we use two approaches. In one of the approaches using a friction machine we determine the dependence of friction force on the velocity of motion of cylinders. In the other approach using a high-speed camera for video filming and the method of presentation of trajectories on a phase plane for analysis of results, we investigate the qualitative and quantitative behavior of the motion of cylinders on a horizontal plane. We compare the results obtained with theoretical and experimental results found earlier. In addition, we give a systematic review of the well-known experimental and theoretical results in this area.
Keywords: dry friction, linear pressure distribution, two-dimensional motion, planar motion, Coulomb law
Citation: Borisov A. V., Karavaev Y. L., Mamaev I. S., Erdakova N. N., Ivanova T. B., Tarasov V. V.,  Experimental Investigation of the Motion of a Body with an Axisymmetric Base Sliding on a Rough Plane, Regular and Chaotic Dynamics, 2015, vol. 20, no. 5, pp. 518-541
DOI:10.1134/S1560354715050020
Karavaev Y. L., Kilin A. A.
The Dynamics and Control of a Spherical Robot with an Internal Omniwheel Platform
2015, vol. 20, no. 2, pp.  134-152
Abstract
This paper deals with the problem of a spherical robot propelled by an internal omniwheel platform and rolling without slipping on a plane. The problem of control of spherical robot motion along an arbitrary trajectory is solved within the framework of a kinematic model and a dynamic model. A number of particular cases of motion are identified, and their stability is investigated. An algorithm for constructing elementary maneuvers (gaits) providing the transition from one steady-state motion to another is presented for the dynamic model. A number of experiments have been carried out confirming the adequacy of the proposed kinematic model.
Keywords: spherical robot, kinematic model, dynamic model, nonholonomic constraint, omniwheel
Citation: Karavaev Y. L., Kilin A. A.,  The Dynamics and Control of a Spherical Robot with an Internal Omniwheel Platform, Regular and Chaotic Dynamics, 2015, vol. 20, no. 2, pp. 134-152
DOI:10.1134/S1560354715020033

Back to the list