Yury Karavaev
Studencheskaya st. 7, Izhevsk, 426069, Russia
M.T. Kalashnikov Izhevsk State Technical University
Publications:
Artemova E. M., Karavaev Y. L., Mamaev I. S., Vetchanin E. V.
Dynamics of a Spherical Robot with Variable Moments of Inertia and a Displaced Center of Mass
2020, vol. 25, no. 6, pp. 689-706
Abstract
The motion of a spherical robot with periodically changing moments of inertia,
internal rotors and a displaced center of mass is considered. It is shown that, under some
restrictions on the displacement of the center of mass, the system of interest features chaotic
dynamics due to separatrix splitting. A stability analysis is made of the upper equilibrium
point of the ball and of the periodic solution arising in its neighborhood, in the case of periodic
rotation of the rotors. It is shown that the lower equilibrium point can become unstable in the
case of fixed rotors and periodically changing moments of inertia.
|
Ardentov A. A., Karavaev Y. L., Yefremov K. S.
Euler Elasticas for Optimal Control of the Motion of Mobile Wheeled Robots: the Problem of Experimental Realization
2019, vol. 24, no. 3, pp. 312-328
Abstract
This paper is concerned with the problem of optimal path planning for a mobile wheeled robot. Euler elasticas, which ensure minimization of control actions, are considered as optimal trajectories. An algorithm for constructing controls that realizes the motion along the trajectory in the form of an Euler elastica is presented. Problems and special features of the application of this algorithm in practice are discussed. In particular, analysis is made of speedup and deceleration along the elastica, and of the influence of the errors made in manufacturing the mobile robot on the precision with which the prescribed trajectory is followed. Special attention is also given to the problem of forming optimal trajectories of motion along Euler elasticas to a preset point at different angles of orientation. Results of experimental investigations are presented.
|
Karavaev Y. L., Kilin A. A., Klekovkin A. V.
Experimental Investigations of the Controlled Motion of a Screwless Underwater Robot
2016, vol. 21, nos. 7-8, pp. 918-926
Abstract
In this paper we describe the results of experimental investigations of the motion of a screwless underwater robot controlled by rotating internal rotors. We present the results of comparison of the trajectories obtained with the results of numerical simulation using the model of an ideal fluid.
|
Borisov A. V., Karavaev Y. L., Mamaev I. S., Erdakova N. N., Ivanova T. B., Tarasov V. V.
Experimental Investigation of the Motion of a Body with an Axisymmetric Base Sliding on a Rough Plane
2015, vol. 20, no. 5, pp. 518-541
Abstract
In this paper we investigate the dynamics of a body with a flat base (cylinder) sliding on a horizontal rough plane. For analysis we use two approaches. In one of the approaches using a friction machine we determine the dependence of friction force on the velocity of motion of cylinders. In the other approach using a high-speed camera for video filming and the method of presentation of trajectories on a phase plane for analysis of results, we investigate the qualitative and quantitative behavior of the motion of cylinders on a horizontal plane. We compare the results obtained with theoretical and experimental results found earlier. In addition, we give a systematic review of the well-known experimental and theoretical results in this area.
|
Karavaev Y. L., Kilin A. A.
The Dynamics and Control of a Spherical Robot with an Internal Omniwheel Platform
2015, vol. 20, no. 2, pp. 134-152
Abstract
This paper deals with the problem of a spherical robot propelled by an internal omniwheel platform and rolling without slipping on a plane. The problem of control of spherical robot motion along an arbitrary trajectory is solved within the framework of a kinematic model and a dynamic model. A number of particular cases of motion are identified, and their stability is investigated. An algorithm for constructing elementary maneuvers (gaits) providing the transition from one steady-state motion to another is presented for the dynamic model. A number of experiments have been carried out confirming the adequacy of the proposed kinematic model.
|