Tatyana Ivanova

Tatyana Ivanova
1, Universitetskaya str., Izhevsk, 426034, Russia
tbesp@rcd.ru
Udmurt State University

In 2004 graduated from Udmurt State University (UdSU), Izhevsk, Russia.

since 2004: lecturer of Department of Theoretical Physics at UdSU.

since 2010: scientist of Department of Vortex Dynamics of Laboratory of Nonlinear Analysis and the Design of New Types of Vehicles at UdSU.

2012: Thesis of Ph.D. (candidate of science). Thesis title: «Numerical and analytical studies of stationary and bifurcation processes in the systems of hydrodynamical type», Moscow Engineering Physics Institute.

Publications:

Kilin A. A., Ivanova T. B., Pivovarova E. N.
Abstract
This paper treats the problem of a spherical robot with an axisymmetric pendulum drive rolling without slipping on a vibrating plane. The main purpose of the paper is to investigate the stabilization of the upper vertical rotations of the pendulum using feedback (additional control action). For the chosen type of feedback, regions of asymptotic stability of the upper vertical rotations of the pendulum are constructed and possible bifurcations are analyzed. Special attention is also given to the question of the stability of periodic solutions arising as the vertical rotations lose stability.
Keywords: spherical robot, vibration, feedback, stabilization, damped Mathieu equation
Citation: Kilin A. A., Ivanova T. B., Pivovarova E. N.,  Stabilization of Steady Rotations of a Spherical Robot on a Vibrating Base Using Feedback, Regular and Chaotic Dynamics, 2023, vol. 28, no. 6, pp. 888-905
DOI:10.1134/S1560354723060060
Kilin A. A., Pivovarova E. N., Ivanova T. B.
Spherical Robot of Combined Type: Dynamics and Control
2015, vol. 20, no. 6, pp.  716-728
Abstract
This paper is concerned with free and controlled motions of a spherical robot of combined type moving by displacing the center of mass and by changing the internal gyrostatic momentum. Equations of motion for the nonholonomic model are obtained and their first integrals are found. Fixed points of the reduced system are found in the absence of control actions. It is shown that they correspond to the motion of the spherical robot in a straight line and in a circle. A control algorithm for the motion of the spherical robot along an arbitrary trajectory is presented. A set of elementary maneuvers (gaits) is obtained which allow one to transfer the spherical robot from any initial point to any end point.
Keywords: spherical robot, control, nonholonomic constraint, combined mechanism
Citation: Kilin A. A., Pivovarova E. N., Ivanova T. B.,  Spherical Robot of Combined Type: Dynamics and Control, Regular and Chaotic Dynamics, 2015, vol. 20, no. 6, pp. 716-728
DOI:10.1134/S1560354715060076
Borisov A. V., Karavaev Y. L., Mamaev I. S., Erdakova N. N., Ivanova T. B., Tarasov V. V.
Abstract
In this paper we investigate the dynamics of a body with a flat base (cylinder) sliding on a horizontal rough plane. For analysis we use two approaches. In one of the approaches using a friction machine we determine the dependence of friction force on the velocity of motion of cylinders. In the other approach using a high-speed camera for video filming and the method of presentation of trajectories on a phase plane for analysis of results, we investigate the qualitative and quantitative behavior of the motion of cylinders on a horizontal plane. We compare the results obtained with theoretical and experimental results found earlier. In addition, we give a systematic review of the well-known experimental and theoretical results in this area.
Keywords: dry friction, linear pressure distribution, two-dimensional motion, planar motion, Coulomb law
Citation: Borisov A. V., Karavaev Y. L., Mamaev I. S., Erdakova N. N., Ivanova T. B., Tarasov V. V.,  Experimental Investigation of the Motion of a Body with an Axisymmetric Base Sliding on a Rough Plane, Regular and Chaotic Dynamics, 2015, vol. 20, no. 5, pp. 518-541
DOI:10.1134/S1560354715050020
Borisov A. V., Erdakova N. N., Ivanova T. B., Mamaev I. S.
Abstract
In this paper we investigate the dynamics of a body with a flat base sliding on a horizontal and inclined rough plane under the assumption of linear pressure distribution of the body on the plane as the simplest dynamically consistent friction model. For analysis we use the descriptive function method similar to the methods used in the problems of Hamiltonian dynamics with one degree of freedom and allowing a qualitative analysis of the system to be made without explicit integration of equations of motion. In addition, we give a systematic review of the well-known experimental and theoretical results in this area.
Keywords: dry friction, linear pressure distribution, planar motion, Coulomb law
Citation: Borisov A. V., Erdakova N. N., Ivanova T. B., Mamaev I. S.,  The Dynamics of a Body with an Axisymmetric Base Sliding on a Rough Plane, Regular and Chaotic Dynamics, 2014, vol. 19, no. 6, pp. 607-634
DOI:10.1134/S1560354714060021
Mamaev I. S., Ivanova T. B.
Abstract
In this paper we consider the dynamics of a rigid body with a sharp edge in contact with a rough plane. The body can move so that its contact point is fixed or slips or loses contact with the support. In this paper, the dynamics of the system is considered within three mechanical models which describe different regimes of motion. The boundaries of the domain of definition of each model are given, the possibility of transitions from one regime to another and their consistency with different coefficients of friction on the horizontal and inclined surfaces are discussed.
Keywords: rod, Painlevé paradox, dry friction, loss of contact, frictional impact
Citation: Mamaev I. S., Ivanova T. B.,  The Dynamics of a Rigid Body with a Sharp Edge in Contact with an Inclined Surface in the Presence of Dry Friction, Regular and Chaotic Dynamics, 2014, vol. 19, no. 1, pp. 116-139
DOI:10.1134/S1560354714010080
Ivanova T. B., Pivovarova E. N.
Abstract
In this paper we consider the control of a dynamically asymmetric balanced ball on a plane in the case of slipping at the contact point. Necessary conditions under which a control is possible are obtained. Specific algorithms of control along a given trajectory are constructed.
Keywords: control, dry friction, Chaplygin’s ball, spherical robot
Citation: Ivanova T. B., Pivovarova E. N.,  Comments on the Paper by A.V. Borisov, A.A. Kilin, I.S. Mamaev "How to Control the Chaplygin Ball Using Rotors. II", Regular and Chaotic Dynamics, 2014, vol. 19, no. 1, pp. 140-143
DOI:10.1134/S1560354714010092

Back to the list