Andrey Agrachev
Publications:
Agrachev A., Motta M.
Lyapunov Exponents of Linear Switched Systems
2025, vol. 30, no. 4, pp. 481-503
Abstract
We explicitly compute the maximal Lyapunov exponent for a switched system on
$\mathrm{SL}_2(\mathbb R)$ and the corresponding switching function which realizes the maximal exponent. This
computation is reduced to the characterization of optimal trajectories for an optimal control
problem on the Lie group.
|
Agrachev A., Beschastnyi I.
Symplectic Geometry of Constrained Optimization
2017, vol. 22, no. 6, pp. 750–770
Abstract
In this paper, we discuss geometric structures related to the Lagrange multipliers rule. The practical goal is to explain how to compute or estimate the Morse index of the second variation. Symplectic geometry allows one to effectively do it even for very degenerate problems with complicated constraints. The main geometric and analytic tool is an appropriately rearranged Maslov index.
We try to emphasize the geometric framework and omit analytic routine. Proofs are often replaced with informal explanations, but a well-trained mathematician will easily rewrite them in a conventional way. We believe that Vladimir Arnold would approve of such an attitude.
|