Klaus Schneider
Mohrenstr. 39, 10117, Berlin, Germany
Weierstrass Institute for Applied Analysis and Stochastics
Publications:
Nefedov N. N., Recke L., Schneider K. R.
Asymptotic stability via the Krein–Rutman theorem for singularly perturbed parabolic periodic Dirichlet problems
2010, vol. 15, nos. 2-3, pp. 382-389
Abstract
We consider singularly perturbed semilinear parabolic periodic problems and assume the existence of a family of solutions. We present an approach to establish the exponential asymptotic stability of these solutions by means of a special class of lower and upper solutions. The proof is based on a corollary of the Krein–Rutman theorem.
|
Gonchenko S. V., Schneider K. R., Turaev D. V.
Quasiperiodic regimes in multisection semiconductor lasers
2006, vol. 11, no. 2, pp. 213-224
Abstract
We consider a mode approximation model for the longitudinal dynamics of a multisection semiconductor laser which represents a slow-fast system of ordinary differential equations for the electromagnetic field and the carrier densities. Under the condition that the number of active sections $q$ coincides with the number of critical eigenvalues we introduce a normal form which admits to establish the existence of invariant tori. The case $q=2$ is investigated in more detail where we also derive conditions for the stability of the quasiperiodic regime
|