Lutz Recke

Unter den Linden 6, D-10099 Berlin, Germany
Humboldt-Universitat zu Berlin, Institut fur Mathematik


Nefedov N. N., Recke L., Schneider K. R.
We consider singularly perturbed semilinear parabolic periodic problems and assume the existence of a family of solutions. We present an approach to establish the exponential asymptotic stability of these solutions by means of a special class of lower and upper solutions. The proof is based on a corollary of the Krein–Rutman theorem.
Keywords: singularly perturbed parabolic Dirichlet problems, exponential asymptotic stability, Krein–Rutman theorem, lower and upper solutions
Citation: Nefedov N. N., Recke L., Schneider K. R.,  Asymptotic stability via the Krein–Rutman theorem for singularly perturbed parabolic periodic Dirichlet problems, Regular and Chaotic Dynamics, 2010, vol. 15, nos. 2-3, pp. 382-389

Back to the list