0
2013
Impact Factor

Leonid Kurakin

8a, Milchakova st., Rostov-on-Don, 344090, Russia
Department of Mechanics and Mathematics, Rostov University

Publications:

Kurakin L. G., Ostrovskaya I. V., Sokolovskiy M. A.
On the Stability of Discrete Tripole, Quadrupole, Thomson’ Vortex Triangle and Square in a Two-layer/Homogeneous Rotating Fluid
2016, vol. 21, no. 3, pp.  291-334
Abstract
A two-layer quasigeostrophic model is considered in the $f$-plane approximation. The stability of a discrete axisymmetric vortex structure is analyzed for the case when the structure consists of a central vortex of arbitrary intensity $\Gamma$ and two/three identical peripheral vortices. The identical vortices, each having a unit intensity, are uniformly distributed over a circle of radius $R$ in a single layer. The central vortex lies either in the same or in another layer. The problem has three parameters $(R, \Gamma, \alpha)$, where $\alpha$ is the difference between layer thicknesses. A limiting case of a homogeneous fluid is also considered. The theory of stability of steady-state motions of dynamic systems with a continuous symmetry group $\mathcal{G}$ is applied. The two definitions of stability used in the study are Routh stability and $\mathcal{G}$-stability. The Routh stability is the stability of a one-parameter orbit of a steady-state rotation of a vortex multipole, and the $\mathcal{G}$-stability is the stability of a three-parameter invariant set $O_\mathcal{G}$, formed by the orbits of a continuous family of steady-state rotations of a multipole. The problem of Routh stability is reduced to the problem of stability of a family of equilibria of a Hamiltonian system. The quadratic part of the Hamiltonian and the eigenvalues of the linearization matrix are studied analytically. The cases of zero total intensity of a tripole and a quadrupole are studied separately. Also, the Routh stability of a Thomson vortex triangle and square was proved at all possible values of problem parameters. The results of theoretical analysis are sustained by numerical calculations of vortex trajectories.
Keywords: discrete multipole vortex structure, two-layer rotating fluid, stability
Citation: Kurakin L. G., Ostrovskaya I. V., Sokolovskiy M. A.,  On the Stability of Discrete Tripole, Quadrupole, Thomson’ Vortex Triangle and Square in a Two-layer/Homogeneous Rotating Fluid, Regular and Chaotic Dynamics, 2016, vol. 21, no. 3, pp. 291-334
DOI:10.1134/S1560354716030059
Kurakin L. G., Ostrovskaya I. V.
Nonlinear Stability Analysis of a Regular Vortex Pentagon Outside a Circle
2012, vol. 17, no. 5, pp.  385-396
Abstract
A nonlinear stability analysis of the stationary rotation of a system of five identical point vortices lying uniformly on a circle of radius $R_0$ outside a circular domain of radius $R$ is performed. The problem is reduced to the problem of stability of an equilibrium position of a Hamiltonian system with a cyclic variable. The stability of stationary motion is interpreted as Routh stability. Conditions for stability, formal stability and instability are obtained depending on the values of the parameter $q = R^2/R_0^2$.
Keywords: point vortices, stationary motion, stability, resonance
Citation: Kurakin L. G., Ostrovskaya I. V.,  Nonlinear Stability Analysis of a Regular Vortex Pentagon Outside a Circle, Regular and Chaotic Dynamics, 2012, vol. 17, no. 5, pp. 385-396
DOI:10.1134/S1560354712050024
Kurakin L. G.
On the Stability of Thomson’s Vortex Pentagon Inside a Circular Domain
2012, vol. 17, no. 2, pp.  150-169
Abstract
We investigate the stability problem for stationary rotation of five identical point vortices located at the vertices of a regular pentagon inside a circular domain. The main result is the proof of theorems which have been announced by the author in Doklady Physics (2004, vol. 49, no. 11, pp. 658–661).
Keywords: point vortices, stationary motion, stability, resonance
Citation: Kurakin L. G.,  On the Stability of Thomson’s Vortex Pentagon Inside a Circular Domain, Regular and Chaotic Dynamics, 2012, vol. 17, no. 2, pp. 150-169
DOI:10.1134/S1560354712020050
Kurakin L. G.
On the stability of Thomson’s vortex configurations inside a circular domain
2010, vol. 15, no. 1, pp.  40-58
Abstract
The paper is devoted to the analysis of stability of the stationary rotation of a system of $n$ identical point vortices located at the vertices of a regular $n$-gon of radius $R_0$ inside a circular domain of radius $R$. Havelock stated (1931) that the corresponding linearized system has exponentially growing solutions for $n \geqslant 7$ and in the case $2 \leqslant n \leqslant 6$ — only if the parameter $p = R^2_0/R^2$ is greater than a certain critical value: $p_{*n} < p < 1$. In the present paper the problem of nonlinear stability is studied for all other cases $0 < p \leqslant p_{*n}$, $n = 2, . . . ,6$. Necessary and sufficient conditions for stability and instability for $n \ne 5$ are formulated. A detailed proof for a vortex triangle is presented. A part of the stability conditions is substantiated by the fact that the relative Hamiltonian of the system attains a minimum on the trajectory of the stationary motion of the vortex triangle. The case where the sign of the Hamiltonian is alternating requires a special approach. The analysis uses results of KAM theory. All resonances up to and including the 4th order occurring here are enumerated and investigated. It has turned out that one of them leads to instability.
Keywords: point vortices, stationary motion, stability, resonance
Citation: Kurakin L. G.,  On the stability of Thomson’s vortex configurations inside a circular domain, Regular and Chaotic Dynamics, 2010, vol. 15, no. 1, pp. 40-58
DOI:10.1134/S1560354710010028

Back to the list