Alexander Korotkov

pr. Gagarina 23, Nizhny Novgorod, 603950 Russia
Lobachevsky State University of Nizhny Novgorod


Korotkov A. G., Kazakov A. O., Osipov G. V.
In this article a new model of motif (small ensemble) of neuron-like elements is proposed. It is built with the use of the generalized Lotka–Volterra model with excitatory couplings. The main motivation for this work comes from the problems of neuroscience where excitatory couplings are proved to be the predominant type of interaction between neurons of the brain. In this paper it is shown that there are two modes depending on the type of coupling between the elements: the mode with a stable heteroclinic cycle and the mode with a stable limit cycle. Our second goal is to examine the chaotic dynamics of the generalized three-dimensional Lotka–Volterra model.
Keywords: Neuronal motifs, Lotka–Volterra model, heteroclinic cycle, period-doubling bifurcation, Feigenbaum scenario, strange attractor, Lyapunov exponents
Citation: Korotkov A. G., Kazakov A. O., Osipov G. V.,  Sequential Dynamics in the Motif of Excitatory Coupled Elements, Regular and Chaotic Dynamics, 2015, vol. 20, no. 6, pp. 701-715

Back to the list