Arezki Kessi

BP 32 El Alia, 16111, Bab Ezzouar, Aligeria
Institute de Mathematiques, USTHB

Publications:

Kessi A., Boukhelifa M.
Abstract
We study the differential equations of fourth order, in the polynomial class. We give the list of equations of this type, whose the indices of Fuchs are integers, then equations who can be with fixed critical points.
Citation: Kessi A., Boukhelifa M.,  Fourth-Order Differential Equations with Integer Indices of Fuchs, Regular and Chaotic Dynamics, 2001, vol. 6, no. 4, pp. 449-453
DOI:10.1070/RD2001v006n04ABEH000189
Kessi A., Messaoud K. M.
First Order Equations without Mobile Critical Points
2001, vol. 6, no. 1, pp.  95-100
Abstract
We study in this paper the ordinary differential equations which are polynomial of order $3$ with respect to $\omega'$, whose coefficients are polynomial with respect to $\omega$ and analytical with respect to $z$. We are looking for the sufficient conditions on the coefficients as functions of $z$, in order to have the solution $\omega$ with fixed critical points.
Citation: Kessi A., Messaoud K. M.,  First Order Equations without Mobile Critical Points, Regular and Chaotic Dynamics, 2001, vol. 6, no. 1, pp. 95-100
DOI:10.1070/RD2001v006n01ABEH000167

Back to the list