0
2013
Impact Factor

K. Messaoud

BP 32 El Alia, 16111, Bab Ezzouar, Aligeria
Institute de Mathematiques, USTHB

Publications:

Kessi A., Messaoud K. M.
First Order Equations without Mobile Critical Points
2001, vol. 6, no. 1, pp.  95-100
Abstract
We study in this paper the ordinary differential equations which are polynomial of order $3$ with respect to $\omega'$, whose coefficients are polynomial with respect to $\omega$ and analytical with respect to $z$. We are looking for the sufficient conditions on the coefficients as functions of $z$, in order to have the solution $\omega$ with fixed critical points.
Citation: Kessi A., Messaoud K. M.,  First Order Equations without Mobile Critical Points, Regular and Chaotic Dynamics, 2001, vol. 6, no. 1, pp. 95-100
DOI:10.1070/RD2001v006n01ABEH000167

Back to the list