Impact Factor

Patricio Leboeuf

Universite de Paris-Sud, 91405 Orsay Cedex
Laboratoire de Physique Yheorique et Models Statistiques Unite Mixte de Recherche de Universite


Leboeuf P., Monastra A. G., Bohigas O.
The Riemannium
2001, vol. 6, no. 2, pp.  205-210
The properties of a fictitious, fermionic, many-body system based on the complex zeros of the Riemann zeta function are studied. The imaginary part of the zeros are interpreted as mean-field single-particle energies, and one fills them up to a Fermi energy $E_F$. The distribution of the total energy is shown to be non-Gaussian, asymmetric and independent of $E_F$ in the limit $E_F \to\infty$. The moments of the limit distribution are computed analytically. The autocorrelation function, the finite energy corrections, and a comparison with random matrix theory are also discussed.
Citation: Leboeuf P., Monastra A. G., Bohigas O.,  The Riemannium, Regular and Chaotic Dynamics, 2001, vol. 6, no. 2, pp. 205-210

Back to the list