Oriol Bohigas
Publications:
Leboeuf P., Monastra A. G., Bohigas O.
The Riemannium
2001, vol. 6, no. 2, pp. 205-210
Abstract
The properties of a fictitious, fermionic, many-body system based on the complex zeros of the Riemann zeta function are studied. The imaginary part of the zeros are interpreted as mean-field single-particle energies, and one fills them up to a Fermi energy EF. The distribution of the total energy is shown to be non-Gaussian, asymmetric and independent of EF in the limit EF→∞. The moments of the limit distribution are computed analytically. The autocorrelation function, the finite energy corrections, and a comparison with random matrix theory are also discussed.
|