First Order Equations without Mobile Critical Points
2001, Volume 6, Number 1, pp. 95-100
Author(s):
Kessi A., Messaoud K. M.
We study in this paper the ordinary differential equations which are polynomial of order $3$ with respect to $\omega'$, whose coefficients are polynomial with respect to $\omega$ and analytical with respect to $z$. We are looking for the sufficient conditions on the coefficients as functions of $z$, in order to have the solution $\omega$ with fixed critical points.
Citation:
Kessi A., Messaoud K. M., First Order Equations without Mobile Critical Points, Regular and Chaotic Dynamics,
2001, Volume 6, Number 1,
pp. 95-100
✖
Мы используем cookie-файлы и сервис Яндекс.Метрики для анализа работы сайта, статистики и улучшения его работы. Продолжая использовать данный сайт, Вы соглашаетесь с условиями Пользовательского соглашения и условиями использования сервиса Яндекс.Метрика, а также выражаете своё согласие на использование cookie-файлов и на обработку своих персональных данных в соответствии с Политикой конфиденциальности. Вы можете запретить обработку cookies в настройках браузера.
We use cookies and Yandex.Metrica service to analyze the usage of our web-site and improve its performance. By continuing to use this website, you agree to the terms of the User Agreement and the terms of Yandex.Metrica service, and give your consent to the Cookies Policy and to the processing of your personal data in accordance with the Privacy Policy. You may deactivate cookies in your browser settings.