There are no Pseudo-Anosov Homeomorphisms of a Nonorientable Surface of Genus 3
Author(s):
Medvedev A. A.
In this paper, we prove the theorem given in the title and a similar theorem for generalized pseudo-Anosov homeomorphisms of the Klein bottle with only one “needle” singularity. We reformulate both statements in terms of the invariant foliation singularity type and orientability of foliations. The method we use to prove the theorems implies using the construction of band surface. Every band surface is represented with its combinatorial description, called the configuration. Applying a series of Rauzy transformations to all possible configurations in the cases considered, we show that the necessary conditions imposed on the invariant foliations are violated whence the results follow.
Keywords:
pseudo-Anosov homeomorphism, foliation, singularity type
✖
Мы используем cookie-файлы и сервис Яндекс.Метрики для анализа работы сайта, статистики и улучшения его работы. Продолжая использовать данный сайт, Вы соглашаетесь с условиями Пользовательского соглашения и условиями использования сервиса Яндекс.Метрика, а также выражаете своё согласие на использование cookie-файлов и на обработку своих персональных данных в соответствии с Политикой конфиденциальности. Вы можете запретить обработку cookies в настройках браузера.
We use cookies and Yandex.Metrica service to analyze the usage of our web-site and improve its performance. By continuing to use this website, you agree to the terms of the User Agreement and the terms of Yandex.Metrica service, and give your consent to the Cookies Policy and to the processing of your personal data in accordance with the Privacy Policy. You may deactivate cookies in your browser settings.