Liouvillian Solutions in the Problem of Motion of a Heavy Gyrostat with a Fixed Point under the Action of Gyroscopic Forces in the Hess Case
Author(s):
Kuleshov A. S., Skripkin A. D.
The problem of motion of a heavy gyrostat with a fixed point under the action of gyroscopic forces, corresponding to the classical Hess case in the problem of motion of a heavy
rigid body with a fixed point, is considered. We derive that the problem of motion of a gyrostat is reduced to solving the second-order linear differential equation with rational coefficients. Using the Kovacic algorithm, we obtain the conditions under which the general solution of the corresponding second-order linear differential equation is expressed in terms of Liouvillian functions and, therefore, it can be presented in explicit form. We prove that under the obtained conditions the equations of motion can be integrated by quadratures.
Keywords:
heavy gyrostat, gyroscopic forces, Hess case, Kovacic algorithm, Liouvillian solutions
✖
Мы используем cookie-файлы и сервис Яндекс.Метрики для анализа работы сайта, статистики и улучшения его работы. Продолжая использовать данный сайт, Вы соглашаетесь с условиями Пользовательского соглашения и условиями использования сервиса Яндекс.Метрика, а также выражаете своё согласие на использование cookie-файлов и на обработку своих персональных данных в соответствии с Политикой конфиденциальности. Вы можете запретить обработку cookies в настройках браузера.
We use cookies and Yandex.Metrica service to analyze the usage of our web-site and improve its performance. By continuing to use this website, you agree to the terms of the User Agreement and the terms of Yandex.Metrica service, and give your consent to the Cookies Policy and to the processing of your personal data in accordance with the Privacy Policy. You may deactivate cookies in your browser settings.