Chaotic Dynamics and Stability Analysis of a Roller Bicycle
Author(s):
Bizyaev I. A., Berdnikova A. S.
We analyze the stability of the straight-line motion of the bicycle depending on the mass-geometric parameters of the bicycle and its translational velocity. We construct a region in phase space which corresponds to initial conditions under which the bicycle tends asymptotically to straight-line motion. To investigate the bifurcations of the periodic solutions of the system, we construct a chart of dynamical regimes on the plane of two parameters and a three-dimensional Poincaré map. We analyze the possibility of acceleration or deceleration of the bicycle when the angular velocity of the rotor periodically changes in time.
Keywords:
bicycle, nonholonomic system, stability, Poincaré map, strange attractor
✖
Мы используем cookie-файлы и сервис Яндекс.Метрики для анализа работы сайта, статистики и улучшения его работы. Продолжая использовать данный сайт, Вы соглашаетесь с условиями Пользовательского соглашения и условиями использования сервиса Яндекс.Метрика, а также выражаете своё согласие на использование cookie-файлов и на обработку своих персональных данных в соответствии с Политикой конфиденциальности. Вы можете запретить обработку cookies в настройках браузера.
We use cookies and Yandex.Metrica service to analyze the usage of our web-site and improve its performance. By continuing to use this website, you agree to the terms of the User Agreement and the terms of Yandex.Metrica service, and give your consent to the Cookies Policy and to the processing of your personal data in accordance with the Privacy Policy. You may deactivate cookies in your browser settings.