On Rational Integrals of Geodesic Flows on 2-Surfaces
Author(s):
Agapov S. V.
In this paper we study Riemannian metrics on 2-surfaces with integrable geodesic flows by means of an additional rational-in-momenta first integral. This problem is reduced to a quasi-linear system of PDEs. We construct solutions to this system via the classical hodograph method. These solutions give rise to local examples of metrics and rational integrals. Some of the constructed metrics have a very simple form. A family of implicit integrable examples parameterized by two arbitrary functions of one variable is also provided.
Keywords:
integrable geodesic flow, rational first integral, semigeodesic coordinates, classical hodograph method, Euler – Poisson – Darboux equation
✖
Мы используем cookie-файлы и сервис Яндекс.Метрики для анализа работы сайта, статистики и улучшения его работы. Продолжая использовать данный сайт, Вы соглашаетесь с условиями Пользовательского соглашения и условиями использования сервиса Яндекс.Метрика, а также выражаете своё согласие на использование cookie-файлов и на обработку своих персональных данных в соответствии с Политикой конфиденциальности. Вы можете запретить обработку cookies в настройках браузера.
We use cookies and Yandex.Metrica service to analyze the usage of our web-site and improve its performance. By continuing to use this website, you agree to the terms of the User Agreement and the terms of Yandex.Metrica service, and give your consent to the Cookies Policy and to the processing of your personal data in accordance with the Privacy Policy. You may deactivate cookies in your browser settings.