On the Construction of Solutions of the Davey – Stewartson I Equation via Dressing Chain
Author(s):
Habibullin I. T., Khakimova A. R.
An original effective method for constructing explicit solutions of integrable Davey –
Stewartson type equations is proposed, based on the use of dressing chains. The main difficulty
arising when using the symmetry approach in 3D is associated with nonlocal variables entering
the equation. To solve the nonlocality problem, it is proposed to replace the infinite dressing
chain with its finite-field reductions preserving the integrability property. The application of
the method is illustrated by the DS I equation, for which a new class of explicit solutions
is constructed that depend on two arbitrary functions. In this example, the dressing chain is
replaced by a finite-field reduction of the Toda lattice corresponding to a simple Lie algebra $A_2$.
Keywords:
integrable system, Bäcklund transformation, dressing chain, generalized symmetry, Lax pair
✖
Мы используем cookie-файлы и сервис Яндекс.Метрики для анализа работы сайта, статистики и улучшения его работы. Продолжая использовать данный сайт, Вы соглашаетесь с условиями Пользовательского соглашения и условиями использования сервиса Яндекс.Метрика, а также выражаете своё согласие на использование cookie-файлов и на обработку своих персональных данных в соответствии с Политикой конфиденциальности. Вы можете запретить обработку cookies в настройках браузера.
We use cookies and Yandex.Metrica service to analyze the usage of our web-site and improve its performance. By continuing to use this website, you agree to the terms of the User Agreement and the terms of Yandex.Metrica service, and give your consent to the Cookies Policy and to the processing of your personal data in accordance with the Privacy Policy. You may deactivate cookies in your browser settings.