Parametric Stability of a Charged Pendulum with an Oscillating Suspension Point Located above Two Electric Charges of the Same Intensity and Sign, Equally Distant from the Suspension Point
Author(s):
Araujo G. C., de Andrade K. J., de Menezes Neto J. L.
In this study, we analyze a planar mathematical pendulum whose suspension point
oscillates vertically according to a harmonic law. The pendulum bob is electrically charged and
positioned slightly above two electric charges of equal sign and intensity, which are equidistant
from the suspension point and separated by a distance of $2d$. Here, $d$ denotes the distance from
each charge to the orthogonal projection of the suspension point onto the horizontal line where
the charges lie. We formulate the Hamiltonian structure of this mechanical system, identify
two equilibrium points, and examine the system’s linear stability. The dynamics are governed
by three dimensionless parameters: $\mu$ which relates to the electric charges; $\varepsilon$, associated with
the amplitude of oscillation of the suspension point; and $\alpha$, determined by the frequency of
the system. We then investigate the parametric stability of the equilibrium points. Finally, we
present the boundary surfaces that separate regions of stability and instability in the parameter
space. For specific values of $\mu$, we derive cross-sectional curves that delineate these regions, using
results from the Krein – Gelfand – Lidskii theorem and the Deprit – Hori method.
Keywords:
charged pendulum, parametric stability, boundary surfaces of stability, Hamiltonian system
✖
Мы используем cookie-файлы и сервис Яндекс.Метрики для анализа работы сайта, статистики и улучшения его работы. Продолжая использовать данный сайт, Вы соглашаетесь с условиями Пользовательского соглашения и условиями использования сервиса Яндекс.Метрика, а также выражаете своё согласие на использование cookie-файлов и на обработку своих персональных данных в соответствии с Политикой конфиденциальности. Вы можете запретить обработку cookies в настройках браузера.
We use cookies and Yandex.Metrica service to analyze the usage of our web-site and improve its performance. By continuing to use this website, you agree to the terms of the User Agreement and the terms of Yandex.Metrica service, and give your consent to the Cookies Policy and to the processing of your personal data in accordance with the Privacy Policy. You may deactivate cookies in your browser settings.