Frederic Laurent-Polz
1361 route des lucioles
06560 Valbonne, France
Institut Non Lineaire de Nice Sophia Antipolis, Valbonne
Publications:
Laurent-Polz F.
Point vortices on a rotating sphere
2005, vol. 10, no. 1, pp. 39-58
Abstract
We study the dynamics of $N$ point vortices on a rotating sphere. The Hamiltonian system becomes infinite dimensional due to the non-uniform background vorticity coming from the Coriolis force. We prove that a relative equilibrium formed of latitudinal rings of identical vortices for the non-rotating sphere persists to be a relative equilibrium when the sphere rotates. We study the nonlinear stability of a polygon of planar point vortices on a rotating plane in order to approximate the corresponding relative equilibrium on the rotating sphere when the ring is close to the pole. We then perform the same study for geostrophic vortices. To end, we compare our results to the observations on the southern hemisphere atmospheric circulation.
|