Impact Factor

Frederic Laurent-Polz

1361 route des lucioles 06560 Valbonne, France
Institut Non Lineaire de Nice Sophia Antipolis, Valbonne


Laurent-Polz F.
Point vortices on a rotating sphere
2005, vol. 10, no. 1, pp.  39-58
We study the dynamics of $N$ point vortices on a rotating sphere. The Hamiltonian system becomes infinite dimensional due to the non-uniform background vorticity coming from the Coriolis force. We prove that a relative equilibrium formed of latitudinal rings of identical vortices for the non-rotating sphere persists to be a relative equilibrium when the sphere rotates. We study the nonlinear stability of a polygon of planar point vortices on a rotating plane in order to approximate the corresponding relative equilibrium on the rotating sphere when the ring is close to the pole. We then perform the same study for geostrophic vortices. To end, we compare our results to the observations on the southern hemisphere atmospheric circulation.
Keywords: point vortices, rotating sphere, relative equilibria, nonlinear stability, planar vortices, geostrophic vortices, Southern Hemisphere Circulation
Citation: Laurent-Polz F.,  Point vortices on a rotating sphere , Regular and Chaotic Dynamics, 2005, vol. 10, no. 1, pp. 39-58
DOI: 10.1070/RD2005v010n01ABEH000299

Back to the list