Marina Barinova

ul. Bolshaya Pecherckaya 25/12, 603155 Nizhny Novgorod, Russia
HSE University

Publications:

Barinova M. K., Osenkov E. M., Pochinka O. V.
Abstract
In investigating dynamical systems with chaotic attractors, many aspects of global behavior of a flow or a diffeomorphism with such an attractor are studied by replacing a nontrivial attractor by a trivial one [1, 2, 11, 14]. Such a method allows one to reduce the original system to a regular system, for instance, of a Morse – Smale system, matched with it. In most cases, the possibility of such a substitution is justified by the existence of Morse – Smale diffeomorphisms with partially determined periodic data, the complete understanding of their dynamics and the topology of manifolds, on which they are defined. With this aim in mind, we consider Morse – Smale diffeomorphisms $f$ with determined periods of the sink points, given on a closed smooth 3-manifold. {We have shown that, if the total number of these sinks is $k$, then their nonwandering set consists of an even number of points which is at least $2k$. We have found necessary and sufficient conditions for the realizability of a set of sink periods in the minimal nonwandering set. We claim that such diffeomorphisms exist only on the 3-sphere and establish for them a sufficient condition for the existence of heteroclinic points. In addition, we prove that the Morse – Smale 3-diffeomorphism with an arbitrary set of sink periods can be implemented in the nonwandering set consisting of $2k+2$ points. We claim that any such a diffeomorphism is supported by a lens space or the skew product $\mathbb S^2\;\tilde{\times}\;\mathbb S^1$.
Keywords: Morse – Smale diffeomorphism, abstract scheme, periodic data, ambient manifold topology, surgery along lamination, orbit space, non-orientable manifolds
Citation: Barinova M. K., Osenkov E. M., Pochinka O. V.,  On Morse – Smale 3-Diffeomorphisms with a Given Tuple of Sink Points Periods, Regular and Chaotic Dynamics, 2025, vol. 30, no. 2, pp. 226-253
DOI:10.1134/S1560354725020042
Barinova M. K.
Abstract
In this paper we consider an $\Omega$-stable 3-diffeomorphism whose chain-recurrent set consists of isolated periodic points and hyperbolic 2-dimensional nontrivial attractors. Nontrivial attractors in this case can only be expanding, orientable or not. The most known example from the class under consideration is the DA-diffeomorphism obtained from the algebraic Anosov diffeomorphism, given on a 3-torus, by Smale's surgery. Each such attractor has bunches of degree 1 and 2. We estimate the minimum number of isolated periodic points using information about the structure of attractors. Also, we investigate the topological structure of ambient manifolds for diffeomorphisms with k bunches and k isolated periodic points.
Keywords: hyperbolicity, expanding attractor, $\Omega$-stability, nonwandering set, regular system
Citation: Barinova M. K.,  On Isolated Periodic Points of Diffeomorphisms with Expanding Attractors of Codimension 1, Regular and Chaotic Dynamics, 2024, vol. 29, no. 5, pp. 794-802
DOI:10.1134/S1560354724050022
Barinova M. K., Grines V. Z., Pochinka O. V., Zhuzhoma E. V.
Hyperbolic Attractors Which are Anosov Tori
2024, vol. 29, no. 2, pp.  369-375
Abstract
We consider a topologically mixing hyperbolic attractor $\Lambda\subset M^n$ for a diffeomorphism $f:M^n\to M^n$ of a compact orientable $n$-manifold $M^n$, $n>3$. Such an attractor $\Lambda$ is called an Anosov torus provided the restriction $f|_{\Lambda}$ is conjugate to Anosov algebraic automorphism of $k$-dimensional torus $\mathbb T^k$. We prove that $\Lambda$ is an Anosov torus for two cases: 1) $\dim{\Lambda}=n-1$, $\dim{W^u_x}=1$, $x\in\Lambda$; 2) $\dim\,\Lambda=k,\,\dim\, W^u_x=k-1,\,x\in\Lambda$, and $\Lambda$ belongs to an $f$-invariant closed $k$-manifold, $2\leqslant k\leqslant n$, topologically embedded in $M^n$.
Keywords: hyperbolic attractor, Anosov diffeomorphism, $\Omega$-stable diffeomorphism, chaotic attractor
Citation: Barinova M. K., Grines V. Z., Pochinka O. V., Zhuzhoma E. V.,  Hyperbolic Attractors Which are Anosov Tori, Regular and Chaotic Dynamics, 2024, vol. 29, no. 2, pp. 369-375
DOI:10.1134/S1560354723540018

Back to the list