Andrey Bobrovsky

Publications:

Stankevich N. V., Bobrovsky A. A., Shchegoleva N. A.
Abstract
The dynamics of two coupled neuron models, the Hindmarsh – Rose systems, are studied. Their interaction is simulated via a chemical coupling that is implemented with a sigmoid function. It is shown that the model may exhibit complex behavior: quasiperiodic, chaotic and hyperchaotic oscillations. A phenomenological scenario for the formation of hyperchaos associated with the appearance of a discrete Shilnikov attractor is described. It is shown that the formation of these attractors leads to the appearance of in-phase bursting oscillations.
Keywords: neuron model, Hindmarsh – Rose system, chaos, hyperchaos, in-phase bursting
Citation: Stankevich N. V., Bobrovsky A. A., Shchegoleva N. A.,  Chaos and Hyperchaos in Two Coupled Identical Hindmarsh – Rose Systems, Regular and Chaotic Dynamics, 2024, vol. 29, no. 1, pp. 120-133
DOI:10.1134/S1560354723540031

Back to the list