Jean Reinaud
Publications:
Reinaud J. N.
Circular Vortex Arrays in Generalised Euler’s and Quasi-geostrophic Dynamics
2022, vol. 27, no. 3, pp. 352-368
Abstract
We investigate the stability of circular point vortex arrays and their
evolution when their dynamics is governed by the generalised
two-dimensional Euler's equations and the three-dimensional
quasi-geostrophic equations. These sets of equations offer a family
of dynamical models depending continuously on a single parameter
$\beta$ which sets how fast the velocity induced by a vortex falls
away from it. In this paper, we show that the differences between the
stability properties of the \emph{classical} two-dimensional point
vortex arrays and the \emph{standard} quasi-geostrophic vortex arrays
can be understood as a bifurcation in the family of models. For a
given $\beta$, the stability depends on the number $N$ of vortices
along the circular array and on the possible addition of a vortex at
the centre of the array. From a practical point of view, the most
important vortex arrays are the stable ones, as they are robust and
long-lived. Unstable vortex arrays can, however, lead to interesting
and convoluted evolutions, exhibiting quasi-periodic and chaotic
motion. We briefly illustrate the evolution of a small selection of
representative unstable vortex arrays.
|
Reinaud J. N.
Three-dimensional Quasi-geostrophic Staggered Vortex Arrays
2021, vol. 26, no. 5, pp. 505-525
Abstract
We determine and characterise relative equilibria for arrays of point vortices in a
three-dimensional quasi-geostrophic flow. The vortices are equally spaced along two horizontal
rings whose centre lies on the same vertical axis. An additional vortex may be placed along
this vertical axis. Depending on the parameters defining the array, the vortices on the two rings
are of equal or opposite sign. We address the linear stability of the point vortex arrays. We
find both stable equilibria and unstable equilibria, depending on the geometry of the array. For
unstable arrays, the instability may lead to the quasi-regular or to the chaotic motion of the
point vortices. The linear stability of the vortex arrays depends on the number of vortices in
the array, on the radius ratio between the two rings, on the vertical offset between the rings
and on the vertical offset between the rings and the central vortex, when the latter is present.
In this case the linear stability also depends on the strength of the central vortex. The nonlinear
evolution of a selection of unstable cases is presented exhibiting examples of quasi-regular
motion and of chaotic motion.
|