Makrina Agaoglou

Publications:

Agaoglou M., Katsanikas M., Wiggins S.
Abstract
In this paper we study an asymmetric valley-ridge inflection point (VRI) potential, whose energy surface (PES) features two sequential index-1 saddles (the upper and the lower), with one saddle having higher energy than the other, and two potential wells separated by the lower index-1 saddle. We show how the depth and the flatness of our potential changes as we modify the parameter that controls the asymmetry as well as how the branching ratio (ratio of the trajectories that enter each well) is changing as we modify the same parameter and its correlation with the area of the lobes as they have been formed by the stable and unstable manifolds that have been extracted from the gradient of the LD scalar fields.
Keywords: phase space structure, Lagrangian descriptors, chemical reaction dynamics, valley ridge inflection point potential
Citation: Agaoglou M., Katsanikas M., Wiggins S.,  The Influence of a Parameter that Controls the Asymmetry of a Potential Energy Surface with an Entrance Channel and Two Potential Wells, Regular and Chaotic Dynamics, 2022, vol. 27, no. 2, pp. 232-241
DOI:10.1134/S1560354722020071
Haigh D., Katsanikas M., Agaoglou M., Wiggins S.
Abstract
Selectivity is an important phenomenon in chemical reaction dynamics. This can be quantified by the branching ratio of the trajectories that visit one or the other well to the total number of trajectories in a system with a potential with two sequential index-1 saddles and two wells (top well and bottom well). In our case, the relative branching ratio is 1:1 because of the symmetry of our potential energy surface. The mechanisms of transport and the behavior of the trajectories in this kind of systems have been studied recently. In this paper we study the time evolution after the selectivity as energy varies using periodic orbit dividing surfaces. We investigate what happens after the first visit of a trajectory to the region of the top or the bottom well for different values of energy. We answer the natural question: What is the destiny of these trajectories?
Keywords: phase space structure, dividing surfaces, chemical physics, periodic orbits, homoclinic and heteroclinic orbits
Citation: Haigh D., Katsanikas M., Agaoglou M., Wiggins S.,  The Time Evolution of the Trajectories After the Selectivity in a Symmetric Potential Energy Surface with a Post-transition-state Bifurcation, Regular and Chaotic Dynamics, 2021, vol. 26, no. 6, pp. 763-774
DOI:10.1134/S1560354721060137
Crossley R., Agaoglou M., Katsanikas M., Wiggins S.
Abstract
In this paper we compare the method of Lagrangian descriptors with the classical method of Poincaré maps for revealing the phase space structure of two-degree-of-freedom Hamiltonian systems. The comparison is carried out by considering the dynamics of a twodegree- of-freedom system having a valley ridge inflection point (VRI) potential energy surface. VRI potential energy surfaces have four critical points: a high energy saddle and a lower energy saddle separating two wells. In between the two saddle points is a valley ridge inflection point that is the point where the potential energy surface geometry changes from a valley to a ridge. The region between the two saddles forms a reaction channel and the dynamical issue of interest is how trajectories cross the high energy saddle, evolve towards the lower energy saddle, and select a particular well to enter. Lagrangian descriptors and Poincaré maps are compared for their ability to determine the phase space structures that govern this dynamical process.
Keywords: phase space structure, periodic orbits, stable and unstable manifolds, homoclinic and heteroclinic orbits, Poincar´e maps, Lagrangian descriptors
Citation: Crossley R., Agaoglou M., Katsanikas M., Wiggins S.,  From Poincaré Maps to Lagrangian Descriptors: The Case of the Valley Ridge Inflection Point Potential, Regular and Chaotic Dynamics, 2021, vol. 26, no. 2, pp. 147-164
DOI:10.1134/S1560354721020040

Back to the list