Zakia Hammouch

Binh Duong Province, Vietnam
Division of Applied Mathematics, Thu Dau Mot University


Hosseini K., Samavat M., Mirzazadeh M., Ma W., Hammouch Z.
The behavior of specific dispersive waves in a new $(3+1)$-dimensional Hirota bilinear (3D-HB) equation is studied. A Bäcklund transformation and a Hirota bilinear form of the model are first extracted from the truncated Painlevé expansion. Through a series of mathematical analyses, it is then revealed that the new 3D-HB equation possesses a series of rational-type solutions. The interaction of lump-type and 1-soliton solutions is studied and some interesting and useful results are presented.
Keywords: new $(3+1)$-dimensional Hirota bilinear equation, Bäcklund transformation, Hirota bilinear form, rational-type solutions
Citation: Hosseini K., Samavat M., Mirzazadeh M., Ma W., Hammouch Z.,  A New $(3+1)$-dimensional Hirota Bilinear Equation: Its Bäcklund Transformation and Rational-type Solutions, Regular and Chaotic Dynamics, 2020, vol. 25, no. 4, pp. 383-391

Back to the list