0
2013
Impact Factor

James Yorke

Univ. of Maryland College Park

Publications:

Saiki Y., Yorke J. A.
Quasi-periodic Orbits in Siegel Disks/Balls and the Babylonian Problem
2018, vol. 23, no. 6, pp.  735-750
Abstract
We investigate numerically complex dynamical systems where a fixed point is surrounded by a disk or ball of quasi-periodic orbits, where there is a change of variables (or conjugacy) that converts the system into a linear map. We compute this “linearization” (or conjugacy) from knowledge of a single quasi-periodic trajectory. In our computations of rotation rates of the almost periodic orbits and Fourier coefficients of the conjugacy, we only use knowledge of a trajectory, and we do not assume knowledge of the explicit form of a dynamical system. This problem is called the Babylonian problem: determining the characteristics of a quasi-periodic set from a trajectory. Our computation of rotation rates and Fourier coefficients depends on the very high speed of our computational method “the weighted Birkhoff average”.
Keywords: quasi-periodic orbits, rotation rates, weighted Birkhoff averaging, Siegel disk, Siegel ball
Citation: Saiki Y., Yorke J. A.,  Quasi-periodic Orbits in Siegel Disks/Balls and the Babylonian Problem, Regular and Chaotic Dynamics, 2018, vol. 23, no. 6, pp. 735-750
DOI:10.1134/S1560354718060084

Back to the list