Pumei Zhang

25 Xitucheng Lu, Haidian District, Beijing, 100088, China
China University of Political Science and Law

Publications:

Zhang P.
Algebraic Properties of Compatible Poisson Brackets
2014, vol. 19, no. 3, pp.  267-288
Abstract
We discuss algebraic properties of a pencil generated by two compatible Poisson tensors $\mathcal{A}(x)$ and $\mathcal{B}(x)$. From the algebraic viewpoint this amounts to studying the properties of a pair of skew-symmetric bilinear forms $\mathcal{A}$ and $\mathcal{B}$ defined on a finite-dimensional vector space. We describe the Lie group $G_\mathcal{P}$ of linear automorphisms of the pencil $\mathcal{P}={\mathcal{A}+\lambda \mathcal{B}}$. In particular, we obtain an explicit formula for the dimension of $G_\mathcal{P}$ and discuss some other algebraic properties such as solvability and Levi–Malcev decomposition.
Keywords: compatible Poisson brackets, Jordan–Kronecker decomposition, pencils of skew symmetric matrices, bi-Hamiltonian systems
Citation: Zhang P.,  Algebraic Properties of Compatible Poisson Brackets, Regular and Chaotic Dynamics, 2014, vol. 19, no. 3, pp. 267-288
DOI:10.1134/S1560354714030010

Back to the list