0
2013
Impact Factor

Dinh Tran

Publications:

Tran D. T., van der Kamp P. H., Quispel G. R. W.
Poisson Brackets of Mappings Obtained as $(q,−p)$ Reductions of Lattice Equations
2016, vol. 21, no. 6, pp.  682-696
Abstract
In this paper, we present Poisson brackets of certain classes of mappings obtained as general periodic reductions of integrable lattice equations. The Poisson brackets are derived from a Lagrangian, using the so-called Ostrogradsky transformation. The $(q,−p)$ reductions are $(p + q)$-dimensional maps and explicit Poisson brackets for such reductions of the discrete KdV equation, the discrete Lotka–Volterra equation, and the discrete Liouville equation are included. Lax representations of these equations can be used to construct sufficiently many integrals for the reductions. As examples we show that the $(3,−2)$ reductions of the integrable partial difference equations are Liouville integrable in their own right.
Keywords: lattice equation, periodic reduction, Lagrangian, Poisson bracket
Citation: Tran D. T., van der Kamp P. H., Quispel G. R. W.,  Poisson Brackets of Mappings Obtained as $(q,−p)$ Reductions of Lattice Equations, Regular and Chaotic Dynamics, 2016, vol. 21, no. 6, pp. 682-696
DOI:10.1134/S1560354716060083

Back to the list