Phanindra Tallapragada

Clemson University


Fedonyuk V., Tallapragada P.
In this paper the dynamics of a Chaplygin sleigh like system are investigated. The system consists a of a Chaplygin sleigh with an internal rotor connected by a torsional spring, which is possibly non-Hookean. The problem is motivated by applications in robotics, where the motion of a nonholonomic system is sought to be controlled by modifying or tuning the stiffness associated with some degrees of freedom of the system. The elastic potential modifies the dynamics of the system and produces two possible stable paths in the plane, a straight line and a circle, each of which corresponds to fixed points in a reduced velocity space. Two different elastic potentials are considered in this paper, a quadratic potential and a Duffing like quartic potential. The stiffness of the elastic element, the relative inertia of the main body and the internal rotor and the initial energy of the system are all bifurcation parameters. Through numerics, we investigate the codimension-one bifurcations of the fixed points while holding all the other bifurcation parameters fixed. The results show the possibility of controlling the dynamics of the sleigh and executing different maneuvers by tuning the stiffness of the spring.
Keywords: nonholonomic systems, Chaplygin sleigh, passive degrees of freedom
Citation: Fedonyuk V., Tallapragada P.,  The Dynamics of a Chaplygin Sleigh with an Elastic Internal Rotor, Regular and Chaotic Dynamics, 2019, vol. 24, no. 1, pp. 114-126
Tallapragada P., Kelly S. D.
We describe a model for the dynamic interaction of a sphere with uniform density and a system of coaxial circular vortex rings in an ideal fluid of equal density. At regular intervals in time, a constraint is imposed that requires the velocity of the fluid relative to the sphere to have no component transverse to a particular circular contour on the sphere. In order to enforce this constraint, new vortex rings are introduced in a manner that conserves the total momentum in the system. This models the shedding of rings from a sharp physical ridge on the sphere coincident with the circular contour. If the position of the contour is fixed on the sphere, vortex shedding is a source of drag. If the position of the contour varies periodically, propulsive rings may be shed in a manner that mimics the locomotion of certain jellyfish. We present simulations representing both cases.
Keywords: fluid-body interactions, vortex rings, aquatic locomotion
Citation: Tallapragada P., Kelly S. D.,  Dynamics and Self-Propulsion of a Spherical Body Shedding Coaxial Vortex Rings in an Ideal Fluid, Regular and Chaotic Dynamics, 2013, vol. 18, nos. 1-2, pp. 21-32

Back to the list