0
2013
Impact Factor

Elena Pivovarova

Izhevsk
Udmurt State University

Publications:

Kilin A. A., Pivovarova E. N.
Stability and Stabilization of Steady Rotations of a Spherical Robot on a Vibrating Base
2020, vol. 25, no. 6, pp.  729-752
Abstract
This paper addresses the problem of a spherical robot having an axisymmetric pendulum drive and rolling without slipping on a vibrating plane. It is shown that this system admits partial solutions (steady rotations) for which the pendulum rotates about its vertical symmetry axis. Special attention is given to problems of stability and stabilization of these solutions. An analysis of the constraint reaction is performed, and parameter regions are identified in which a stabilization of the spherical robot is possible without it losing contact with the plane. It is shown that the partial solutions can be stabilized by varying the angular velocity of rotation of the pendulum about its symmetry axis, and that the rotation of the pendulum is a necessary condition for stabilization without the robot losing contact with the plane.
Keywords: spherical robot, vibrations, stability, stabilization, partial solutions, constraint reaction, Lagrange top, Kapitsa pendulum
Citation: Kilin A. A., Pivovarova E. N.,  Stability and Stabilization of Steady Rotations of a Spherical Robot on a Vibrating Base, Regular and Chaotic Dynamics, 2020, vol. 25, no. 6, pp. 729-752
DOI:10.1134/S1560354720060155

Back to the list