Vladimir Lazutkin
St.-Petersburg, Ulyanovskaya str., 1/1, Petrodvorec
St.-Petersburg State University
Publications:
Igotti N. N., Lazutkin V. F.
Existence of complex homoclinic points
2000, vol. 5, no. 4, pp. 383-400
Abstract
A method of proving the existence of a local transversal intersection between two immersed holomorphic curves in $\mathbb{C}^2$ is suggested. It is based on an application of the inverse function theorem, the corresponding inequalities being checked numerically. The method is applied to the problem of interpretation of tips of ferns on the unstable manifold of the semistandard map as complex homoclinic points.
|
Lazutkin V. F.
Making Fractals Fat
1999, vol. 4, no. 1, pp. 51-69
Abstract
An explicit contruction of a nonuniformly hyperbolic invariant set of positive Lebesgue measure in the phase space of an area-preserving map is suggested. The construction is based on the study of the web created by the stable and unstable manifolds of fixed hyperbolic points.
|
Giorgilli A., Lazutkin V. F., Simó C.
Visualization of a Hyperbolic Structure in Area Preserving Maps
1997, vol. 2, nos. 3-4, pp. 47-61
Abstract
We present a simple method which displays a hyperbolic structure in the phase space of an area preserving map. The method is illustrated for the case of the Carleson standard map. As it follows from our experiments, the structure of the chaotic zone for the standard map is different from the one found for the systems of Anosov type.
|
Lazutkin V. F.
Interfering Combs and a Multiple Horseshoe
1997, vol. 2, no. 2, pp. 3-13
Abstract
If two identical combs overlap with a small shift, this displays an interfering picture. We analyze this phenomenon and consider an application to creating a hyperbolic invariant set in the phase space of an area preserving map.
|