Alexander Veselov

Loughborough, LE11 3TU, UK
Department of Mathematical Sciences, Loughborough University

Publications:

Veselov A. P.
A few things I learnt from Jürgen Moser
2008, vol. 13, no. 6, pp.  515-524
Abstract
A few remarks on integrable dynamical systems inspired by discussions with Jürgen Moser and by his work.
Keywords: integrability, adiabatic invariants, geodesics
Citation: Veselov A. P.,  A few things I learnt from Jürgen Moser, Regular and Chaotic Dynamics, 2008, vol. 13, no. 6, pp. 515-524
DOI:10.1134/S1560354708060038
Dullin H. R., Richter P. H., Veselov A. P.
Action variables of the Kovalevskaya top
1998, vol. 3, no. 3, pp.  18-31
Abstract
An explicit formula for the action variables of the Kovalevskaya top as Abelian integrals of the third kind on the Kovalevskaya curve is found. The linear system of differential equations of Picard–Fuchs type, describing the dependence of these variables on the integrals of the Kovalevskaya system, is presented in explicit form. The results are based on the formula for the actions derived by S.P.Novikov and A.P.Veselov within the theory of algebro-geometric Poisson brackets on the universal bundle of hyperelliptic Jacobians.
Citation: Dullin H. R., Richter P. H., Veselov A. P.,  Action variables of the Kovalevskaya top, Regular and Chaotic Dynamics, 1998, vol. 3, no. 3, pp. 18-31
DOI:10.1070/RD1998v003n03ABEH000077
Veselov A. P., Penskoi A. V.
Abstract
A generalization of the theory of algebro-geometric Poisson brackets on the space of finite-gap Schrodinger operators, developped by S.P.Novikov and A.P.Veselov, to the case of periodic zero-diagonal difference operators of second order is proposed. A necessary and sufficient condition for such a bracket to be compatible with higher Volterra flows is found.
Citation: Veselov A. P., Penskoi A. V.,  On algebro-geometric Poisson brakets for the Volterra lattice, Regular and Chaotic Dynamics, 1998, vol. 3, no. 2, pp. 3-9
DOI:10.1070/RD1998v003n02ABEH000066

Back to the list