Andreas Knauf

Cauerstr. 11, D-91058 Erlangen
Universität Erlangen-Nürnberg

Publications:

Knauf A., Montgomery R.
Compactification of the Energy Surfaces for $n$ Bodies
2023, vol. 28, nos. 4-5, pp.  628-658
Abstract
For $n$ bodies moving in Euclidean $d$-space under the influence of a homogeneous pair interaction we compactify every center of mass energy surface, obtaining a $\big(2d(n-1)-1\big)$-dimensional manifold with corners in the sense of Melrose. After a time change, the flow on this manifold is globally defined and nontrivial on the boundary.
Keywords: regularization, scattering, collision
Citation: Knauf A., Montgomery R.,  Compactification of the Energy Surfaces for $n$ Bodies, Regular and Chaotic Dynamics, 2023, vol. 28, nos. 4-5, pp. 628-658
DOI:10.1134/S1560354723040081
Knauf A., Seri M.
Symbolic Dynamics of Magnetic Bumps
2017, vol. 22, no. 4, pp.  448-454
Abstract
For $n$ convex magnetic bumps in the plane, whose boundary has a curvature somewhat smaller than the absolute value of the constant magnetic field inside the bump, we construct a complete symbolic dynamics of a classical particle moving with speed one.
Keywords: magnetic billiards, symbolic dynamics, classical mechanics
Citation: Knauf A., Seri M.,  Symbolic Dynamics of Magnetic Bumps, Regular and Chaotic Dynamics, 2017, vol. 22, no. 4, pp. 448-454
DOI:10.1134/S1560354717040074
Knauf A.
Qualitative Aspects of Classical Potential Scattering
1999, vol. 4, no. 1, pp.  3-22
Abstract
We derive criteria for the existence of trapped orbits (orbits which are scattering in the past and bounded in the future). Such orbits exist if the boundary of Hill's region is non-empty and not homeomorphic to a sphere.
For non-trapping energies we introduce a topological degree which can be non-trivial for low energies, and for Coulombic and other singular potentials. A sum of non-trapping potentials of disjoint support is trapping iff at least two of them have non-trivial degree.
For $d \geqslant 2$ dimensions the potential vanishes if for any energy above the non-trapping threshold the classical differential cross section is a continuous function of the asymptotic directions.
Citation: Knauf A.,  Qualitative Aspects of Classical Potential Scattering, Regular and Chaotic Dynamics, 1999, vol. 4, no. 1, pp. 3-22
DOI:10.1070/RD1999v004n01ABEH000096

Back to the list