0
2013
Impact Factor

Richard Montgomery

Santa Cruz, CA, USA
Dept. of Mathematics, University of California

Publications:

Montgomery R.
MICZ-Kepler: Dynamics on the Cone over $SO(n)$
2013, vol. 18, no. 6, pp.  600-607
Abstract
We show that the $n$-dimensional MICZ-Kepler system arises from symplectic reduction of the "Kepler problem" on the cone over the rotation group $SO(n)$. As a corollary we derive an elementary formula for the general solution of the MICZ-Kepler problem. The heart of the computation is the observation that the additional MICZ-Kepler potential, $|\phi|^2/r^2$, agrees with the rotational part of the cone’s kinetic energy.
Keywords: Kepler problem, MICZ-K system, co-adjoint orbit, Sternberg phase space, symplectic reduction, superintegrable systems
Citation: Montgomery R.,  MICZ-Kepler: Dynamics on the Cone over $SO(n)$, Regular and Chaotic Dynamics, 2013, vol. 18, no. 6, pp. 600-607
DOI:10.1134/S1560354713060038

Back to the list