0
2013
Impact Factor

J. Reinaud

St Andrews, Fife KY16 9AJ, Scotland, UK
University of St Andrews, Mathematical Institute North Haugh

Publications:

Carton X., Morvan M., Reinaud J. N., Sokolovskiy M. A., L’Hegaret P., Vic C.
Vortex Merger near a Topographic Slope in a Homogeneous Rotating Fluid
2017, vol. 22, no. 5, pp.  455-478
Abstract
The effect of a bottom slope on the merger of two identical Rankine vortices is investigated in a two-dimensional, quasi-geostrophic, incompressible fluid.
When two cyclones initially lie parallel to the slope, and more than two vortex diameters away from the slope, the critical merger distance is unchanged. When the cyclones are closer to the slope, they can merge at larger distances, but they lose more mass into filaments, thus weakening the efficiency of merger. Several effects account for this: the topographic Rossby wave advects the cyclones, reduces their mutual distance and deforms them. This alongshelf wave breaks into filaments and into secondary vortices which shear out the initial cyclones. The global motion of fluid towards the shallow domain and the erosion of the two cyclones are confirmed by the evolution of particles seeded both in the cyclones and near the topographic slope. The addition of tracer to the flow indicates that diffusion is ballistic at early times.
For two anticyclones, merger is also facilitated because one vortex is ejected offshore towards the other, via coupling with a topographic cyclone. Again two anticyclones can merge at large distance but they are eroded in the process.
Finally, for taller topographies, the critical merger distance is again increased and the topographic influence can scatter or completely erode one of the two initial cyclones. Conclusions are drawn on possible improvements of the model configuration for an application to the ocean.
Keywords: two-dimensional incompressible flow, vortex merger, critical merger distance, bottom slope, topographic wave and vortices, diffusion
Citation: Carton X., Morvan M., Reinaud J. N., Sokolovskiy M. A., L’Hegaret P., Vic C.,  Vortex Merger near a Topographic Slope in a Homogeneous Rotating Fluid, Regular and Chaotic Dynamics, 2017, vol. 22, no. 5, pp. 455-478
DOI:10.1134/S156035471705001X
Perrot X., Reinaud J. N., Carton X., Dritschel D. G.
Homostrophic vortex interaction under external strain, in a coupled QG-SQG model
2010, vol. 15, no. 1, pp.  66-83
Abstract
The interaction between two co-rotating vortices, embedded in a steady external strain field, is studied in a coupled Quasi-Geostrophic – Surface Quasi-Geostrophic (hereafter referred to as QG-SQG) model. One vortex is an anomaly of surface density, and the other is an anomaly of internal potential vorticity. The equilibria of singular point vortices and their stability are presented first. The number and form of the equilibria are determined as a function of two parameters: the external strain rate and the vertical separation between the vortices. A curve is determined analytically which separates the domain of existence of one saddle-point, and that of one neutral point and two saddle-points. Then, a Contour-Advective Semi-Lagrangian (hereafter referred to as CASL) numerical model of the coupled QG-SQG equations is used to simulate the time-evolution of a sphere of uniform potential vorticity, with radius $R$ at depth $−2H$ interacting with a disk of uniform density anomaly, with radius $R$, at the surface. In the absence of external strain, distant vortices co-rotate, while closer vortices align vertically, either completely or partially (depending on their initial distance). With strain, a fourth regime appears in which vortices are strongly elongated and drift away from their common center, irreversibly. An analysis of the vertical tilt and of the horizontal deformation of the internal vortex in the regimes of partial or complete alignment is used to quantify the three-dimensional deformation of the internal vortex in time. A similar analysis is performed to understand the deformation of the surface vortex.
Keywords: coupled QG-SQG model, point-vortex, CASL
Citation: Perrot X., Reinaud J. N., Carton X., Dritschel D. G.,  Homostrophic vortex interaction under external strain, in a coupled QG-SQG model, Regular and Chaotic Dynamics, 2010, vol. 15, no. 1, pp. 66-83
DOI:10.1134/S1560354710010041

Back to the list