0
2013
Impact Factor

Mark Stremler

Blacksburg, VA 24061, USA
Department of Engineering Science and Mechanics, Virginia Polytechnic Institute and State University

Publications:

Krishnamurthy V. S., Stremler M. A.
Finite-time Collapse of Three Point Vortices in the Plane
2018, vol. 23, no. 5, pp.  530-550
Abstract
We investigate the finite-time collapse of three point vortices in the plane utilizing the geometric formulation of three-vortexmotion from Krishnamurthy, Aref and Stremler (2018) Phys. Rev. Fluids 3, 024702. In this approach, the vortex system is described in terms of the interior angles of the triangle joining the vortices, the circle that circumscribes that triangle, and the orientation of the triangle. Symmetries in the governing geometric equations of motion for the general three-vortex problem allow us to consider a reduced parameter space in the relative vortex strengths. The well-known conditions for three-vortex collapse are reproduced in this formulation, and we show that these conditions are necessary and sufficient for the vortex motion to consist of collapsing or expanding self-similar motion. The geometric formulation enables a new perspective on the details of this motion. Relationships are determined between the interior angles of the triangle, the vortex strength ratios, the (finite) system energy, the time of collapse, and the distance traveled by the configuration prior to collapse. Several illustrative examples of both collapsing and expanding motion are given.
Keywords: ideal flow, vortex dynamics, point vortices
Citation: Krishnamurthy V. S., Stremler M. A.,  Finite-time Collapse of Three Point Vortices in the Plane, Regular and Chaotic Dynamics, 2018, vol. 23, no. 5, pp. 530-550
DOI:10.1134/S1560354718050040
Borisov A. V., Meleshko V. V., Stremler M. A., van Heijst G. J.
Hassan Aref (1950–2011)
2011, vol. 16, no. 6, pp.  671-684
Abstract
Citation: Borisov A. V., Meleshko V. V., Stremler M. A., van Heijst G. J.,  Hassan Aref (1950–2011), Regular and Chaotic Dynamics, 2011, vol. 16, no. 6, pp. 671-684
DOI:10.1134/S1560354711060086

Back to the list