Rolling of a Homogeneous Ball on a Moving Cylinder
Author(s):
Kilin A. A., Pivovarova E. N., Ivanova T. B.
This paper addresses the problem of a homogeneous ball rolling on the inner surface
of a circular cylinder in a field of gravity parallel to its axis. It is assumed that the ball rolls
without slipping on the surface of the cylinder, and that the cylinder executes plane-parallel
motions in a circle perpendicular to its symmetry axis. The integrability of the problem by
quadratures is proved. It is shown that in this problem the trajectories of the ball are quasiperiodic
in the general case, and that an unbounded elevation of the ball is impossible. However,
in contrast to a fixed (or rotating) cylinder, there exist resonances at which the ball moves on
average downward with constant acceleration.
Keywords:
homogeneous ball, nonholonomic constraint, surface of revolution, moving cylinder, unbounded drift, nonautonomous system, quadrature, integrability
✖
Мы используем cookie-файлы и сервис Яндекс.Метрики для анализа работы сайта, статистики и улучшения его работы. Продолжая использовать данный сайт, Вы соглашаетесь с условиями Пользовательского соглашения и условиями использования сервиса Яндекс.Метрика, а также выражаете своё согласие на использование cookie-файлов и на обработку своих персональных данных в соответствии с Политикой конфиденциальности. Вы можете запретить обработку cookies в настройках браузера.
We use cookies and Yandex.Metrica service to analyze the usage of our web-site and improve its performance. By continuing to use this website, you agree to the terms of the User Agreement and the terms of Yandex.Metrica service, and give your consent to the Cookies Policy and to the processing of your personal data in accordance with the Privacy Policy. You may deactivate cookies in your browser settings.