This paper continues the discussion started in [10] concerning Arnold's legacy on classical KAM theory and (some of) its modern developments. We prove a
detailed and explicit ''global'' Arnold's KAM theorem, which yields, in particular, the Whitney conjugacy of a non-degenerate,
real-analytic, nearly-integrable Hamiltonian system to an integrable system on a closed, nowhere dense, positive measure subset of the phase space. Detailed measure estimates on the Kolmogorov set are provided in case the phase space is: (A)
a uniform neighbourhood of an arbitrary (bounded) set times the $d$-torus and
(B) a domain with $C^2$ boundary times the $d$-torus. All constants are explicitly given.
Keywords:
nearly-integrable Hamiltonian systems, perturbation theory, KAM theory, Arnold’s scheme, Kolmogorov set, primary invariant tori, Lagrangian tori, measure estimates, small divisors, integrability on nowhere dense sets, Diophantine frequencies
Citation:
Chierchia L., Koudjinan C. E., V. I. Arnold’s ''Global'' KAM Theorem and Geometric Measure Estimates, Regular and Chaotic Dynamics,
2021, Volume 26, Number 1,
pp. 61-88