Generalized Contour Dynamics: A Review

    2018, Volume 23, Number 5, pp.  507-518

    Author(s): Llewellyn Smith S. G., Chang C., Chu T., Blyth M., Hattori Y., Salman H.

    Contour dynamics is a computational technique to solve for the motion of vortices in incompressible inviscid flow. It is a Lagrangian technique in which the motion of contours is followed, and the velocity field moving the contours can be computed as integrals along the contours. Its best-known examples are in two dimensions, for which the vorticity between contours is taken to be constant and the vortices are vortex patches, and in axisymmetric flow for which the vorticity varies linearly with distance from the axis of symmetry. This review discusses generalizations that incorporate additional physics, in particular, buoyancy effects and magnetic fields, that take specific forms inside the vortices and preserve the contour dynamics structure. The extra physics can lead to time-dependent vortex sheets on the boundaries, whose evolution must be computed as part of the problem. The non-Boussinesq case, in which density differences can be important, leads to a coupled system for the evolution of both mean interfacial velocity and vortex sheet strength. Helical geometry is also discussed, in which two quantities are materially conserved and whose evolution governs the flow.
    Keywords: vortex dynamics, contour dynamics, vortex patch, vortex sheet, helical geometry
    Citation: Llewellyn Smith S. G., Chang C., Chu T., Blyth M., Hattori Y., Salman H., Generalized Contour Dynamics: A Review, Regular and Chaotic Dynamics, 2018, Volume 23, Number 5, pp. 507-518



    Access to the full text on the Springer website