Topological horseshoes for Arneodo–Coullet–Tresser maps

    2006, Volume 11, Number 2, pp.  181-190

    Author(s): Du B., Li M., Malkin M. I.

    In this paper, we study the family of Arneodo–Coullet–Tresser maps $F(x,y,z)=(ax-b(y-z)$, $bx+a(y-z)$, $cx-dxk+e z)$ where $a$, $b$, $c$, $d$, $e$ are real parameters with $bd \ne 0$ and $k>1$ is an integer. We find regions of parameters near anti-integrable limits and near singularities for which there exist hyperbolic invariant sets such that the restriction of $F$ to these sets is conjugate to the full shift on two or three symbols.
    Keywords: topological horseshoe, full shift, polynomial maps, generalized Hénon maps, nonwandering set, inverse limit, topological entropy
    Citation: Du B., Li M., Malkin M. I., Topological horseshoes for Arneodo–Coullet–Tresser maps , Regular and Chaotic Dynamics, 2006, Volume 11, Number 2, pp. 181-190


    Download File
    PDF, 308.68 Kb