C Burdík

Trojanova 13, 120 00 Prague 2, Czech Republic
Department of Mathematics, Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering

Publications:

Burdík C., Navrátil O.
Abstract
We propose new formulas for eigenvectors of the Gaudin model in the sl(3) case. The central point of the construction is the explicit form of some operator $P$, which is used for derivation of eigenvalues given by the formula
$|w_1, w_2) = \sum\limits_{n=0}^\infty \frac{P^n}{n!}| w_1, w_2, 0>$,
where $w_1$, $w_2$ fulfil the standard well-know Bethe Ansatz equations.
Keywords: Gaudin model, Bethe Ansatz
Citation: Burdík C., Navrátil O.,  New Formula for the Eigenvectors of the Gaudin Model in the $sl(3)$ Case, Regular and Chaotic Dynamics, 2008, vol. 13, no. 5, pp. 403-416
DOI:10.1134/S156035470805002X

Back to the list