0
2013
Impact Factor

C Burdík

Trojanova 13, 120 00 Prague 2, Czech Republic
Department of Mathematics, Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering

Publications:

Burdík C., Navrátil O.
New Formula for the Eigenvectors of the Gaudin Model in the $sl(3)$ Case
2008, vol. 13, no. 5, pp.  403-416
Abstract
We propose new formulas for eigenvectors of the Gaudin model in the sl(3) case. The central point of the construction is the explicit form of some operator $P$, which is used for derivation of eigenvalues given by the formula
$|w_1, w_2) = \sum\limits_{n=0}^\infty \frac{P^n}{n!}| w_1, w_2, 0>$,
where $w_1$, $w_2$ fulfil the standard well-know Bethe Ansatz equations.
Keywords: Gaudin model, Bethe Ansatz
Citation: Burdík C., Navrátil O.,  New Formula for the Eigenvectors of the Gaudin Model in the $sl(3)$ Case, Regular and Chaotic Dynamics, 2008, vol. 13, no. 5, pp. 403-416
DOI:10.1134/S156035470805002X

Back to the list