Shuqiang Zhu
611130 Chengdu, China
School of Economic Mathematics, Southwestern University of Finance and Economics
Publications:
Zhu S.
Compactness and Index of Ordinary Central Configurations for the Curved $N$-Body Problem
2021, vol. 26, no. 3, pp. 236-257
Abstract
For the curved $n$-body problem, we show that the set of ordinary central configurations is away from singular configurations in $\mathbb{H}^3$ with positive momentum of inertia, and away from a subset of singular
configurations in $\mathbb{S}^3$. We also show that
each of the $n!/2$ geodesic ordinary central configurations for $n$ masses has Morse index $n-2$.
Then we get a direct corollary that there are at least $\frac{(3n-4)(n-1)!}{2}$ ordinary central
configurations for given $n$ masses if all ordinary central configurations of these masses are nondegenerate.
|