0
2013
Impact Factor

José Laudelino de Menezes Neto

Universidade Federal da Paraíba

Publications:

de Menezes Neto J. L., Cabral H. E.
Parametric Stability of a Pendulum with Variable Length in an Elliptic Orbit
2020, vol. 25, no. 4, pp.  323-329
Abstract
We study the dynamics of a simple pendulum attached to the center of mass of a satellite in an elliptic orbit. We consider the case where the pendulum lies in the orbital plane of the satellite. We find two linearly stable equilibrium positions for the Hamiltonian system describing the problem and study their parametric stability by constructing the boundary curves of the stability/instability regions.
Keywords: pendulum, parametric stability
Citation: de Menezes Neto J. L., Cabral H. E.,  Parametric Stability of a Pendulum with Variable Length in an Elliptic Orbit, Regular and Chaotic Dynamics, 2020, vol. 25, no. 4, pp. 323-329
DOI:10.1134/S1560354720040012

Back to the list