Vladimir Krajňák

Publications:

Krajňák V., Ezra G. S., Wiggins S.
Abstract
We consider the roaming mechanism for chemical reactions under the nonholonomic constraint of constant kinetic energy. Our study is carried out in the context of the Hamiltonian isokinetic thermostat applied to Chesnavich’s model for an ion-molecule reaction. Through an analysis of phase space structures we show that imposing the nonholonomic constraint does not prevent the system from exhibiting roaming dynamics, and that the origin of the roaming mechanism turns out to be analogous to that found in the previously studied Hamiltonian case.
Keywords: nonholonomic constraint, phase space structures, invariant manifolds, chemical reaction, roaming
Citation: Krajňák V., Ezra G. S., Wiggins S.,  Roaming at Constant Kinetic Energy: Chesnavich's Model and the Hamiltonian Isokinetic Thermostat, Regular and Chaotic Dynamics, 2019, vol. 24, no. 6, pp. 615-627
DOI:10.1134/S1560354719060030

Back to the list