Impact Factor

Rafael Ortega

18071 Granada, Spain
Departamento de Matematica Aplicada, Facultad de Ciencias, Universidad de Granada


Ortega R.
Stable Periodic Solutions in the Forced Pendulum Equation
2013, vol. 18, no. 6, pp.  585-599
Consider the pendulum equation with an external periodic force and an appropriate condition on the length parameter. It is proved that there exists at least one stable periodic solution for almost every external force with zero average. The stability is understood in the Lyapunov sense.
Keywords: Lyapunov stability, forced pendulum, prevalence, periodic solution, regular value, discriminant
Citation: Ortega R.,  Stable Periodic Solutions in the Forced Pendulum Equation, Regular and Chaotic Dynamics, 2013, vol. 18, no. 6, pp. 585-599

Back to the list