Realization of $A$-Diffeomorphisms of Surfaces with Connected One-Dimensional Basic Sets
Author(s):
Grines V. Z., Mints D. I., Zhirov A. Y.
This paper is a continuation of our previous work where we investigated the
class $\mathbb G(M^2)$ of $A$-diffeomorphisms of closed orientable connected surfaces such that their
nonwandering sets consist of one-dimensional basic sets (attractors and repellers). In that work,
we showed that the dynamical properties of each diffeomorphism from a given class define a
collection consisting of nonempty multisets of natural numbers (each such collection contains
at least two multisets). These multisets are topological invariants of the diffeomorphism and
uniquely determine the topology of the ambient surface. In this paper, we solve the problem
of realization of diffeomorphisms from the class $\mathbb G(M^2)$ with respect to a given collection of
multisets of natural numbers. We describe all possible collections of multisets from which one
can construct a diffeomorphism from the class $\mathbb G(M^2)$, presenting a step-by-step algorithm of
construction.
Keywords:
$A$-diffeomorphism, realization, one-dimensional basic set, expanding attractor
✖
Мы используем cookie-файлы и сервис Яндекс.Метрики для анализа работы сайта, статистики и улучшения его работы. Продолжая использовать данный сайт, Вы соглашаетесь с условиями Пользовательского соглашения и условиями использования сервиса Яндекс.Метрика, а также выражаете своё согласие на использование cookie-файлов и на обработку своих персональных данных в соответствии с Политикой конфиденциальности. Вы можете запретить обработку cookies в настройках браузера.
We use cookies and Yandex.Metrica service to analyze the usage of our web-site and improve its performance. By continuing to use this website, you agree to the terms of the User Agreement and the terms of Yandex.Metrica service, and give your consent to the Cookies Policy and to the processing of your personal data in accordance with the Privacy Policy. You may deactivate cookies in your browser settings.