Computing the Dynamical Core of Horseshoe Homoclinic Orbits
Author(s):
Mendoza V.
The dynamics that necessarily coexists with a homoclinic orbit is captured by its
dynamical core. In this work we characterize the dynamical core of a broad class of homoclinic
orbits in the Smale horseshoe, specifically those with decorations of three types: maximal, P-lists
and star decorations. For each of these families, we construct an explicit pruning region
whose survival set — consisting of all symbolic sequences whose orbits avoid the region under
the shift — coincides with the dynamical core. This provides a unified symbolic description of
the forced dynamics and establishes a framework for computing dynamical invariants such as
topological entropy.
Keywords:
homoclinic orbits, dynamical core, Smale horseshoe, pruning theory
✖
Мы используем cookie-файлы и сервис Яндекс.Метрики для анализа работы сайта, статистики и улучшения его работы. Продолжая использовать данный сайт, Вы соглашаетесь с условиями Пользовательского соглашения и условиями использования сервиса Яндекс.Метрика, а также выражаете своё согласие на использование cookie-файлов и на обработку своих персональных данных в соответствии с Политикой конфиденциальности. Вы можете запретить обработку cookies в настройках браузера.
We use cookies and Yandex.Metrica service to analyze the usage of our web-site and improve its performance. By continuing to use this website, you agree to the terms of the User Agreement and the terms of Yandex.Metrica service, and give your consent to the Cookies Policy and to the processing of your personal data in accordance with the Privacy Policy. You may deactivate cookies in your browser settings.