The Lorentzian Anti-de Sitter Plane

    2025, Volume 30, Number 4, pp.  504-537

    Author(s): Ali A. Z., Sachkov Y. L.

    In this paper the two-dimensional Lorentzian problem on the anti-de Sitter plane is studied. Using methods of geometric control theory and differential geometry, we describe the reachable set, investigate the existence of Lorentzian length maximizers, compute extremal trajectories, construct an optimal synthesis, characterize Lorentzian distance and spheres, and describe the Lie algebra of Killing vector fields.
    Keywords: Lorentzian geometry, geometric control theory, optimal control
    Citation: Ali A. Z., Sachkov Y. L., The Lorentzian Anti-de Sitter Plane, Regular and Chaotic Dynamics, 2025, Volume 30, Number 4, pp. 504-537



    Access to the full text on the Springer website