Parametric Stability of a Pendulum with Variable Length in an Elliptic Orbit

    2020, Volume 25, Number 4, pp.  323-329

    Author(s): de Menezes Neto J. L., Cabral H. E.

    We study the dynamics of a simple pendulum attached to the center of mass of a satellite in an elliptic orbit. We consider the case where the pendulum lies in the orbital plane of the satellite. We find two linearly stable equilibrium positions for the Hamiltonian system describing the problem and study their parametric stability by constructing the boundary curves of the stability/instability regions.
    Keywords: pendulum, parametric stability
    Citation: de Menezes Neto J. L., Cabral H. E., Parametric Stability of a Pendulum with Variable Length in an Elliptic Orbit, Regular and Chaotic Dynamics, 2020, Volume 25, Number 4, pp. 323-329


    Download File
    PDF, 380.04 Kb