Dynamics of Rubber Chaplygin Sphere under Periodic Control
2020, Volume 25, Number 2, pp. 215-236
Author(s): Mamaev I. S., Vetchanin E. V.
Author(s): Mamaev I. S., Vetchanin E. V.
This paper examines the motion of a balanced spherical robot under the action of
periodically changing moments of inertia and gyrostatic momentum. The system of equations
of motion is constructed using the model of the rolling of a rubber body (without slipping and
twisting) and is nonconservative. It is shown that in the absence of gyrostatic momentum the
equations of motion admit three invariant submanifolds corresponding to plane-parallel motion
of the sphere with rotation about the minor, middle and major axes of inertia. The abovementioned
motions are quasi-periodic, and for the numerical estimate of their stability charts
of the largest Lyapunov exponent and charts of stability are plotted versus the frequency and
amplitude of the moments of inertia. It is shown that rotations about the minor and major axes
of inertia can become unstable at sufficiently small amplitudes of the moments of inertia. In
this case, the so-called “Arnol’d tongues” arise in the stability chart. Stabilization of the middle
unstable axis of inertia turns out to be possible at sufficiently large amplitudes of the moments
of inertia, when the middle axis of inertia becomes the minor axis for a part of a period. It
is shown that the nonconservativeness of the system manifests itself in the occurrence of limit
cycles, attracting tori and strange attractors in phase space. Numerical calculations show that
strange attractors may arise through a cascade of period-doubling bifurcations or after a finite
number of torus-doubling bifurcations.
Access to the full text on the Springer website |